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We suggest a spatially local feedback mechanism for stabilizing periodic orbits in spatially extended sys-
tems. Our method, which is based on a comparison between present and past states of the system, does not
require the external generation of an ideal reference state and can suppress both absolute and convective
instabilities. As an example, we analyze the complex Ginzburg-Landau equation in one dimension, showing
how the time-delay feedback enlarges the stability domain for traveling waves.@S1063-651X~96!51407-8#

PACS number~s!: 05.45.1b, 47.27.Rc, 47.52.1j

A common situation encountered in the operation of
physical systems or devices is that a useful solution of the
equations of motion turns out to be unstable in a parameter
regime of interest. In many cases the desired behavior is a
steady state or a regular periodic motion, and the instability
eventually leads to chaotic fluctuations which limit the sys-
tem’s performance. Thus one is led to explore the possible
modifications of the system that render the desired motion
stable.

Recently, there has been intense interest in the application
of proportional feedback for stabilizing periodic orbits@1,2#.
Since the orbit in question is a solution to the equations of
motion, the stabilizing feedback signal vanishes when con-
trol is successful, so that all the desirable features of the
uncontrolled system are retained@3#. Many methods for con-
trolling systems with only a few relevant degrees of freedom
have now been successfully demonstrated.

Some of the most interesting and significant dynamical
instabilities arise in spatially extended systems which may be
described by partial differential equations, a large number of
coupled ordinary differential equations, or coupled map lat-
tices. Well-known examples of practical interest include con-
vecting fluids, large Fresnel number lasers, and arrays of
semiconductor lasers. For small systems, the number of un-
stable modes remains small and techniques involving only a
few degrees of freedom can effectively treat the spatiotem-
poral dynamics@4#. For the case of open systems with con-
vective instabilities, control of larger systems has also been
demonstrated@5#.

In this paper, we present and analyze a method for stabi-
lizing periodic orbits in arbitrarily large systems.~A different
approach has been suggested by Hu and Qu@6#.! Our ap-
proach is a generalization of the technique known as ‘‘ex-
tended time-delay autosynchronization’’~ETDAS!, which
has been successfully applied to a variety of low-
dimensional systems, both numerical and experimental@2#.
In ETDAS, the current state of the system is compared to its
state one or more periods in the past. In this paper, we take
the feedback mechanism to be local in space, in the sense
that the signal at a given point depends only on previous
behavior of that particular point, not on the behavior of dis-
tant regions or spatially averaged quantities. The locally de-
termined feedback is applied simultaneously at all points in
the system. Our analytical treatment of the important special
case of the one-dimensional~1D! complex Ginzburg-Landau

equation shows both that this method can stabilize spatially
extended periodic orbits and, more generally, that the intro-
duction of spatially local time-delayed interactions can dra-
matically alter the stability properties of extended determin-
istic systems.

Our method has three key features: First, it applies
equally well to systems with absolute or convective instabili-
ties. Second, because the feedback is locally determined, the
method is scalable up to arbitrarily large system sizes with
no increase in complexity. Third, it does not require com-
parison to an external reference signal and therefore might be
implemented in fast~optical! systems, systems in which the
reference state is not knowna priori, or systems in which the
reference state has nontrivial spatiotemporal structure. In
systems where the control works, the only information that
must be supplied by the controller is the periodt of the
desired motion.

The general approach we take is as follows. To generate
the feedback signal for a system described by an evolving
field f(x,t), the entire field is compared to time-delayed
images of itselff(x,t2nt), with t chosen to be the period
of the desired orbit andn taking all positive integer values.
With tn[t2nt, the feedback signal is the field

ef~x,t !5g (
n50

`

Rn@f~x,tn!2f~x,tn11!#, ~1!

whereg is a real parameter~the gain! andR is a real param-
eter between 0 and 1. We assume here thatt is known in
advance.~The problem of finding appropriate periodic orbits
and their periods is beyond the scope of this paper.! It is
clear thatef vanishes identically whenf(x,t) is periodic in
time with periodt. As emphasized elsewhere@2#, the infinite
sum can be obtained in practice with a recursive feedback
loop that contains only a single time-delay device. In some
systems, it may be possible to implement this form of control
directly, e.g., by using optical elements that preserve the spa-
tial structure of a laser beam. Alternatively,ef(x,t) can be
considered as a limiting case of the placement of indepen-
dent ETDAS controllers at many discrete points in the sys-
tem.

We are interested in the extent to which proper choices of
g andR can improve the stability of selected time-periodic
patterns of the fieldf(x,t) for arbitrarily large system sizes.
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In this paper, we treat the 1D complex Ginzburg-Landau
~CGL! equation with a cubic nonlinearity, a partial differen-
tial equation that describes a large class of systems that un-
dergo a bifurcation from regular oscillations to spatiotempo-
ral chaos@7#. In addition to its relevance to fluid and laser
systems, this equation has the advantage of possessing purely
sinusoidal traveling wave solutions which permit a detailed
analysis. Our linear stability analysis shows that periodic
traveling wave states can indeed be stabilized by appropriate
choices ofg andR, even for system parameters correspond-
ing to turbulence~‘‘defect chaos’’ @7#! in the uncontrolled
equation. A numerical illustration of successful control is
shown in Fig. 1.

The controlled CGL equation we study may be written in
dimensionless form as

] tA5A1~11 ic1!]x
2A2~12 ic3!uAu2A1eA , ~2!

wherex is a one-dimensional continuous variable,A(x,t) is
a complex field,c1 andc3 are real parameters, andeA(x,t) is
the control term defined above. Without the control term, Eq.
~2! admits traveling wave solutions of wave numberk and
frequencyv5(c11c3)k

22c3. Each solution,

Ak~x,t !5A12k2 exp~ ikx2 ivt !, ~3!

becomes unstable for large enoughc1 and/orc3 , and all of
them are unstable forc1c3.1 @9#.

We find that whent is chosen to be 2p/v, the domain of
c1 and c3 values over which the solutionAk is stable is
expanded significantly for modest values ofg andR. Some
typical results are shown in Fig. 2. Each panel of the figure

corresponds to a different set of values fork and R. The
shaded region represents the parameter values for which the
traveling waveAk is a stable solution of the equation with
control, but would be unstable without control. The instabil-
ity would be convective just above onset, but absolute for
largerc1 or c3 @8#, as indicated by the dashed line in Fig. 2.
A surprising result is that time-delay feedback allows stabi-
lization of traveling waves deep into the ordinarily chaotic,
absolutely unstable regime (c1c3;8), even though it is al-
most totally ineffective in stabilizing the uniform (k50) os-
cillatory state.

We now describe our procedure for obtaining the stability
domains depicted in Fig. 2. Standard linearization of Eq.~2!
aboutAk(x,t) yields sets of ordinary, time-delay differential
equations for the Fourier amplitudes of a perturbation. The
technique of Ref.@10# is then applied to determine the sta-
bility of the different modes. In each periodt, a given mode
grows or decays by a complex factorm ~a Floquet multi-
plier!. A system is stable if and only ifumu,1 for every
mode. The defining relation for the Floquet multipliers of a
general, finite-dimensional system controlled by ETDAS is
@10#

Um21TFexpE
0

t

dtS J1g
12m21

12Rm21M D G21U50, ~4!

whereT@ # represents the time-ordered product,J is the
Jacobian of the uncontrolled mode equations,M is a ‘‘con-
trol matrix’’ that contains the information about the way in
which the control signal is formed and enters into the dy-
namical equations, and1 is the identity matrix.

FIG. 1. Numerical simulation of the 1D CGL equation with
periodic boundaries and parameters (c15c352). ~See final page of
text for simulation details.! The plots show the evolution of the
phase of the complex fieldA. Black ~white! regions correspond to
phases near 0 (6p). ~a! Without control, an unstable traveling
wave state~wave numberk50.075p) evolves into a turbulent state.
~b! Time-delayed control stabilizes the traveling wave. The control
parameters@see Eq.~1!# areg520.6 andR50.75.

FIG. 2. Stability diagrams for three choices of wave number
k and two choices of parameterR in Eq. ~1!. ~a!
k50.075p,R50.75, The circles mark the values ofc1 ,c3 used in
Fig. 3. ~See final page of text for explanations ofU0, U1, and the
dotted line.! ~b! k50.075p,R50.5, ~c! k50.1p,R50.75, ~d!
k50.05p,R50.75. In the area labeledS the uncontrolled traveling
wave is stable. In the shaded region, control is possible. In all cases
shown here, control is achieved with gainugu,1. In the region
markedU, no value ofg can stabilize the traveling wave. The
dashed line marks the transition from convective~lower left region!
to absolute instability in the uncontrolled system.
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In the present case, three features simplify the analysis:
First,M51; second, the Fourier modes decouple, with each
yielding a condition of the form of Eq.~4! with 232 matri-
cesJ andM ; third, neitherJ norM is time dependent. The
latter is due first to the trivial time dependence of the desired
solutionAk and second to the directly additive way in which
e appears in the equation for the controlled system. In such
cases, the determinant in Eq.~4! may be evaluated explicitly
by solving the differential equation that yields the time-
ordered product. Here the defining relation for the Floquet
multipliers associated with a perturbation at wave number
q1k becomes

g~m21![m22e2at22m21eatcosh~bt!1150, ~5!

a52q222ic1kq1k2211g
12m21

12Rm21 ,

b5@~12k224ic3kq12c1c3q
2!~12k2!14k2q214ic1kq

3

2c1
2q4#1/2.

The stateAk(x,t) with particular choices ofc1 , c3 , g,
andR is linearly stable if and only if all of the roots ofg lie
outside the unit circle. Note thatg(m21) has an infinite num-
ber of roots due to the time delay in the system. As described
in Ref. @10#, it is straightforward to perform a winding num-
ber calculation~or a contour integration! that will return
N , the number of roots that lie inside the unit circle. The
linear stability condition then reduces toN 50. The winding
number calculation is performed numerically by evaluating
g on selected points on the unit circle. The precision of such
a technique is determined by how well one can distinguish
between a root inside the unit circle and one very close, but
still outside. Using an adaptive step-size method, we re-
solved the location of such roots to an accuracy of 1026.

It is at this point that the many degrees of freedom in a
spatially extended system complicate the analysis. In order
for a particular state to be stable, it must be true that a single
value ofg exists for whichAk is stable with respect to per-
turbations at all wavenumbers. To see whether such ag ex-
ists for fixedk, c1 , c3 , andR, it is useful to plot the region
of stability in the space ofg and the perturbation wave num-
ber q @11#. Figure 3~a! shows an example for whichAk is
linearly stable against perturbations of all wave numbers for
a range ofg ~shown between the dashed lines!. Note that the
plot must be symmetric aboutq50 since from Eq.~5! it is
clear thatm(q)5m* (2q). The rapid divergence of the sta-
bility boundaries for largeq merely reflects the fact that the
system is highly stable with respect to largeq perturbations
in the absence of control.

Figures 3~b! and 3~c! show why control cannot be
achieved for some values ofc1 , c3 , k, andR. The problem
is that peaks in the lower boundary reach values ofg that are
already ruled out by valleys in the upper boundary, so that no
single value ofg can stabilize all wave numbers. The source
of the peaks may be understood as follows: For a periodic
state with frequencyv andJ andM independent of time, it
can be shown that ETDAS cannot stabilize a perturbation for
which argm5mv, wherem is any integer. The peaks in the
lower boundary occur at wave numbers where this condition

is approximately satisfied. In Fig. 3, the peak in the lower
boundary atq50 corresponds tom50. In Fig. 3~c!, the peak
at q;0.75 corresponds tom561. In the present case there
can be no effect from higherumu because control will already
have been lost due tom561.

By analyzing stability diagrams in theq-g plane for a
grid of values in thec1-c3 plane, one can construct the sta-
bility diagrams shown in Fig. 2. As in the example of Fig.
3~a!, there is a range of the feedback gaing that successfully
achieves control for each point in the shaded area of Fig. 2.
In general, the minimum value ofugu required increases
smoothly asc1 and/orc3 increases. In the domains shown
here, as well as others we investigated, the value ofugu re-
quired for stability is less than 1 even at the highest values of
c1 andc3 in the controllable domain.~Details will be given
in a longer paper.! Beyond the line labeledU0 ~U1!, control
is lost due to the mechanism described above withm50
(m561), not through a divergence in the requiredg.

Figures 2~a!, 2~c!, and 2~d! illustrate how the stability
boundaries shift for different choices ofk. Figure 2~a! cor-
responds tok50.075p. For largerk @Fig. 2~c!#, theU0 line
moves farther from the uncontrolled stability boundary and
U1 moves closer. For smallerk @Fig. 2~d!#, the situation is
reversed. Ask is decreased toward 0, the boundaryU0 ap-
proaches the original uncontrolled stability boundary, so that
no enhancement of thek50 state is obtainable. Figures 2~a!
and 2~b! show the effect of changingR. As R is increased,
the domain of stability increases in area. However, even as
R approaches its maximum value of 1, the domain of stabil-
ity cannot include the region in which one of the unstable
modes of the uncontrolled system has frequency6v. The
boundary of this region is the dotted line in Fig. 2~a!.

We have checked specific aspects of the results presented
in Fig. 2 with numerical simulations of the controlled CGL
equation. Periodic boundary conditions were employed with
the system size chosen to be an integer multiple of the wave-
length of the traveling wave. System sizes corresponded to a
length of at least 1532p/k. The simulations were per-
formed with a second-order predictor-corrector and finite dif-
ference technique with time steps of order 1022 and spatial
resolution;400 points. The instabilities were observed to

FIG. 3. Maps of the stable domains~shaded area! for
k50.075p andR50.75 in terms of the feedback gaing and the
perturbation wave numberq for four values of (c1 ,c3). ~a!
c15c352, ~b! c15c352.5, and~c! c153.3,c351.75. The dotted
lines are drawn atg50 to draw attention to the case of no control.
In ~a! the dashed lines show the range ofg for which control is
successful.
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occur at values of (c1 ,c3) consistent with the analytic results
presented here for infinite systems.

We have demonstrated that time-delay feedback can be
effective in stabilizing periodic states of spatially extended
systems. Application of this technique to the stabilization of
unstable ordered states in fluid, laser, and biological systems
is strongly suggested. We expect the control technique to be
applicable to many types of periodic states, though the sta-
bility analysis may become complicated. If the linearized
equation for the perturbations about the periodic solution has
space-dependent coefficients but its time dependence is still
trivial, perturbations can be decomposed into appropriate
eigenfunctions and the analysis discussed here will apply. If
the periodic state has trivial spatial dependence but nontrivial
time dependence, then the stability of the Fourier modes can
be analyzed using the numerical method of Ref.@10#. Fi-
nally, when the periodic state has complicated spatiotempo-
ral structure, it appears that numerical integration of the con-
trolled equations would be the most efficient approach. Even
in the absence of any stability analysis, however, control can

be attempted in a physical system given only the knowledge
of t and the ability to adjust the single parameterg.

Our work points to several important questions for future
study. What is the minimum density of discrete controllers
needed in situations where spatially continuous processing in
the feedback loop is not possible? What level of noise can be
tolerated? How can one force the system from the spatiotem-
porally chaotic state into the desired controllable state?

Finally, we suggest that the application of time-delayed
feedback may be a valuable tool for studying the intrinsic
physics of spatiotemporally chaotic systems. By varyingg
and t slowly, it may be possible to locate previously un-
known periodic states or to observe other novel effects.
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